
¿No podría ser la 5 también? Que yo sepa debe cumplir:33. Si una matriz cuadrada A de orden 3 verifica que |A|= 0 entonces su polinomio característico puede ser:
1. –λ^3 + 7λ^2 + 8λ – 1
2. 7λ^3 + 8λ + 2
3. –λ^3 + 7λ^2 + 8λ
4. –λ^3 + 8λ – 7
5. –λ^3 + 8λ
coef. de λ^3 = -1
coef. de λ^2 = tr(A)
coef. de λ^0 = det(A)=0
Pero nadie nos dice que la traza no sea cero no?
No tengo claro si la 1 debe ser o no, pero creo que la 5 si es cierta (la int. dipolo-dipolo va con 1/r^3)74. ¿Cuál de las siguientes afirmaciones en relación con la energía de interacción entre dos dipolos eléctricos es cierta?
1. La fuerza entre dos dipolos eléctricos no yace según la línea que los une excepto para ciertas posiciones específicas.
2. La energía potencial entre dos dipolos eléctricos varía con la distancia según r-4.
3. En el movimiento debido a la interacción dipolodipolo se conserva el momento angular orbital de los mismos.
4. La energía de interacción entre dos dipolos eléctricos no es simétrica.
5. La interacción entre dos dipolos eléctricos disminuye con la distancia más rápidamente que la interacción entre las cargas.
No se si me esty cegando con algo.. pero ¿esto se puede sacar sin la masa?
86. Un cuerpo está unido a un muelle horizontal de constante k=5N/m. El muelle se alarga 10 cm y se suelta en el instante inicial t=0. Hallar en qué instante pasa el cuerpo por primera vez por la posición de equilibrio
1. 2,34 s
2. 3,445 s
3. 1,778 s
4. 0,993 s
5. 1,221 s
Me pasa como en la anterior, ¿no necesitamos la densidad?145. ¿Cuántas moléculas están presentes en 400 mL de alcohol etílico? fórmula C2H5OH
1. 1.500
2. 1,24x10 23
3. 2,408x10 23
4. 5,234x10^ 24
5. 4,13x10^24
Yo puse la 3... creo que ambas son ciertas173. Sobre el coeficiente de atenuación másico, puede afirmarse que:
1. Se usa para cuantificar la atenuación de materiales independiente de su estado físico.
2. La unidad del coeficiente de atenuación másico es el g/cm2
3. Se obtiene dividiendo el coeficiente de atenuación lineal por la densidad del absorbente
4. La unidad del coeficiente de atenuación másico es cm2g.
5. Se usa para cuantificar la atenuación de materiales dependiendo de su estado físico.
\(\gamma=\frac{V_{riz}^{rms}}{V_{cc}^{conRiz}}=\frac{\frac{I_{cc}}{2 \sqrt{3}RC}}{V_{cc}^{sinRiz}-V_{riz}}\)185. Tras filtrado por condensador la señal resultante tiene un factor de ondulación:
1. Directamente proporcional a la frecuencia de la señal.
2. Directamente proporcional a la capacidad del condensador.
3. Directamente proporcional a la corriente media a través de la carga.
4. Inversamente proporcional a la corriente media a través de la carga.
5. Inversamente proporcional a la capacidad del condensador
V_riz es proporcional a Icc pero Vcc tb, de alguna manera creo que la dependencia con Icc se anularía.
Yo marcaría la 5, y en todo caso la 3, pero la 4 nunca...
A mi me sale la 1 (el doble)206. Un cuerpo de 10 kg está suspendido verticalmente de un cable de acero de 3 m de longitud y 1 mm de diámetro. Calcular la contracción transversal que experimenta el cable. Módulo de Young E=20•10^10 N/m2; coeficiente de Poisson μ=0.28.
1. 0.174 μm
2. 0.087 μm
3. 1.87 μm
4. 0.0178 μm
5. 0.87 μm
No se si hago algo mal o ellos lo aplican al radio y yo al diámetro, yo uso:\(\Delta\phi= -\frac{\mu}{E}\frac{F}{S}\phi\)
Es la 1 no? entre otras cosas porque ¿qué es 2A14??234. Dado el vector a=6i-4j+12k y siendo τ un vector unitario que tiene la misma dirección y sentido que a es correcto decir:
1. τ=(6i-4j+12k)/√(6^2+(-4)^2+12^2)
2. τ=(6i-4j+12k)/(62+(-)2+122)2
3. τ=2(6i-4j+12k)/2A14
4. τ=(3i-2j+6k)/7
5. Todo lo anterior
En fin, eso es todo, pasad una buena noche!

Feliz 2013, suerte y plaza para todos!