Examen Temático Semana 26

Foro de discusion Sobre RFH

Moderador: Alberto

Responder
jeusus
Al
Al
Mensajes: 127
Registrado: 10 Ene 2013, 12:00

Examen Temático Semana 26

Mensaje: # 128788Mensaje jeusus »

Aquí voy de nuevo con una tanda de dudas.
En serio, ¿nadie más tiene dudas respecto a los parciales? Me estoy sintiendo fatal. De todos modos aquí voy.

2. Sea X una variable aleatoria N(3,2). Sea Y = X2.
Entonces:
1. P(Y ≥ 9) = 1/2
2. P(Y > 9) = 1/2
3. P(Y ≥ 9) > 1/2[RC]
4. P(Y ≥ 9) < 1/2


15. Para medir el diámetro de un roble se realizan
doce mediciones obteniéndose un valor medio
de 243 cm. Una de las medidas fue 238 cm. Averigua el error relativo cometido en dicha medida.
1. 0,98%
2. 2,06%[RC]
3. 1,20%
4. 0,02%


20. Si X es una variable aleatoria con función de densidad fX(x) = αe-λ|x| (con α, λ constantes positivas).
Entonces la varianza de X es:
1. 2/λ
2. 1/λ2
3. 2/λ2[RC]
4. 3/λ2


24. Calcular ∫0∞te-2t cos t dt.
1. 3/5
2. 2/5
3. 3
4. 3/25[RC]
¿Alguien sabe algún método para resolver esto más o menos rápido? Haciéndolo por partes te puedes tirar las 4,5 horas de examen.


38. El problema max (x + 1)2 + (y + 7/2)2 sujeta a x +
4y ≤ k tiene la solución (x*, y*) y el valor óptimo
de la función es 17. Entonces
1. k = 0.
2. k = −2.
3. k = 4.
4. k = 2.[RC]
Este lo pregunté el año pasado pero nadie pudo responder. ¿Algún alma caritativa que sepa cómo enfrentarse a esta cosa?


59. Se reparten todas las cartas de una baraja entre
5 jugadores. Sea X la variable aleatoria que cuenta el número de reyes que recibe el primer jugador. Entonces X sigue una distribución
1. Binomial
2. Normal
3. Geométrica
4. Ninguna de las anteriores.[RC]
Yo pensé que sería geométrica. ¿De qué tipo sería entonces?


83. En una bolsa hay bolas numeradas: 9 bolas con
un uno, 5 con un dos y 6 conun tres. Sacamos una
bola y vemos qué número tiene. Calcula la media
de la distribución de probabilidad.
1. 1
2. 1,5
3. 1,85[RC]
4. 2
Si los números de las bolas son enteros, ¿por qué se queda con una media no entera? En este otro ejercicio hace eso:
64. Si X es una variable aleatoria uniforme en [0; 5] e
Y = [X] (parte entera de X), la esperanza E(Y )
vale
1. 5/2
2. 7/2
3. 2[RC]
4. 3


Muchas gracias y besitos :kiss: :kiss:
Rakel
O
O
Mensajes: 77
Registrado: 08 Ene 2020, 03:03

Re: Examen Temático Semana 26

Mensaje: # 128789Mensaje Rakel »

No te preocupes por las dudas. Quien pregunta aprende. Que seas el único que pregunta tiene más que ver con el número de personas que estéis haciendo estos exámenes que con tu inteligencia (que la tienes y por eso preguntas)

Te mando lo que se me ha ocurrido hasta ahora.q

2. Diría que necesitas una tabla que no te van a dar en el examen pero bueno, a lo mejor alguien lo sabe hacer mejor. Yo solo tengo el teorema de chevishev (o como se escriba) pero vale para casos concretos y no es el caso (o no se hacerlo para que salga el caso)

24. Estas eran divertidas de hacer cuando llevabas tu propia calculadora pero como dices, en un examen de 4.5h con 210 preguntas ni de coña.

83. La media o esperanza da lo que da, no hay nada que implique que tomes el entero. Puede que en el 64 salga entero porque precisamente ha las de dicha función. De todas formas te envío la foto
Adjuntos
20211015_155749.jpg
20211015_155749.jpg (2.78 MiB) Visto 4017 veces
Rakel
O
O
Mensajes: 77
Registrado: 08 Ene 2020, 03:03

Re: Examen Temático Semana 26

Mensaje: # 128791Mensaje Rakel »

Me he dado cuenta de que para el 64 no hace falta integrar porque, aunque es continua, todos los valores duran lo mismo y por tanto se puede considerar discreta. Así que te paso la foto (iría como complemento a la anterior)

También te paso la de la 15 que ayer me la salté
Adjuntos
20211016_170857.jpg
20211016_170857.jpg (3.69 MiB) Visto 3998 veces
ackerman
F
F
Mensajes: 89
Registrado: 01 Sep 2020, 20:35

Re: Examen Temático Semana 26

Mensaje: # 128792Mensaje ackerman »

jeusus escribió: 15 Oct 2021, 12:21 Aquí voy de nuevo con una tanda de dudas.
En serio, ¿nadie más tiene dudas respecto a los parciales? Me estoy sintiendo fatal. De todos modos aquí voy.

2. Sea X una variable aleatoria N(3,2). Sea Y = X2.
Entonces:
1. P(Y ≥ 9) = 1/2
2. P(Y > 9) = 1/2
3. P(Y ≥ 9) > 1/2[RC]
4. P(Y ≥ 9) < 1/2


15. Para medir el diámetro de un roble se realizan
doce mediciones obteniéndose un valor medio
de 243 cm. Una de las medidas fue 238 cm. Averigua el error relativo cometido en dicha medida.
1. 0,98%
2. 2,06%[RC]
3. 1,20%
4. 0,02%
Tienes que restar esos dos valores para obtener el error absoluto y luego dividir por el valor medio y ya sale.

20. Si X es una variable aleatoria con función de densidad fX(x) = αe-λ|x| (con α, λ constantes positivas).
Entonces la varianza de X es:
1. 2/λ
2. 1/λ2
3. 2/λ2[RC]
4. 3/λ2


24. Calcular ∫0∞te-2t cos t dt.
1. 3/5
2. 2/5
3. 3
4. 3/25[RC]
¿Alguien sabe algún método para resolver esto más o menos rápido? Haciéndolo por partes te puedes tirar las 4,5 horas de examen.
Quizás usando el método de derivar bajo la integral, pero tampoco es algo recomendable hacer en un examen de este tipo xdd.


38. El problema max (x + 1)2 + (y + 7/2)2 sujeta a x +
4y ≤ k tiene la solución (x*, y*) y el valor óptimo
de la función es 17. Entonces
1. k = 0.
2. k = −2.
3. k = 4.
4. k = 2.[RC]
Este lo pregunté el año pasado pero nadie pudo responder. ¿Algún alma caritativa que sepa cómo enfrentarse a esta cosa?
Sí, ya la tengo vista de otros años y va ser mejor que la des por perdida, creo que nadie la va a responder jajaja.

59. Se reparten todas las cartas de una baraja entre
5 jugadores. Sea X la variable aleatoria que cuenta el número de reyes que recibe el primer jugador. Entonces X sigue una distribución
1. Binomial
2. Normal
3. Geométrica
4. Ninguna de las anteriores.[RC]
Yo pensé que sería geométrica. ¿De qué tipo sería entonces?
Apostaría a que fuese una hipergeométrica, porque entiendo que no hay reemplazamiento. No se me ocurre otra.

83. En una bolsa hay bolas numeradas: 9 bolas con
un uno, 5 con un dos y 6 conun tres. Sacamos una
bola y vemos qué número tiene. Calcula la media
de la distribución de probabilidad.
1. 1
2. 1,5
3. 1,85[RC]
4. 2
Si los números de las bolas son enteros, ¿por qué se queda con una media no entera? En este otro ejercicio hace eso:
64. Si X es una variable aleatoria uniforme en [0; 5] e
Y = [X] (parte entera de X), la esperanza E(Y )
vale
1. 5/2
2. 7/2
3. 2[RC]
4. 3


Muchas gracias y besitos :kiss: :kiss:
jeusus
Al
Al
Mensajes: 127
Registrado: 10 Ene 2013, 12:00

Re: Examen Temático Semana 26

Mensaje: # 128794Mensaje jeusus »

ackerman escribió: 16 Oct 2021, 17:19
jeusus escribió: 15 Oct 2021, 12:21 Aquí voy de nuevo con una tanda de dudas.
En serio, ¿nadie más tiene dudas respecto a los parciales? Me estoy sintiendo fatal. De todos modos aquí voy.

2. Sea X una variable aleatoria N(3,2). Sea Y = X2.
Entonces:
1. P(Y ≥ 9) = 1/2
2. P(Y > 9) = 1/2
3. P(Y ≥ 9) > 1/2[RC]
4. P(Y ≥ 9) < 1/2


15. Para medir el diámetro de un roble se realizan
doce mediciones obteniéndose un valor medio
de 243 cm. Una de las medidas fue 238 cm. Averigua el error relativo cometido en dicha medida.
1. 0,98%
2. 2,06%[RC]
3. 1,20%
4. 0,02%
Tienes que restar esos dos valores para obtener el error absoluto y luego dividir por el valor medio y ya sale.

20. Si X es una variable aleatoria con función de densidad fX(x) = αe-λ|x| (con α, λ constantes positivas).
Entonces la varianza de X es:
1. 2/λ
2. 1/λ2
3. 2/λ2[RC]
4. 3/λ2


24. Calcular ∫0∞te-2t cos t dt.
1. 3/5
2. 2/5
3. 3
4. 3/25[RC]
¿Alguien sabe algún método para resolver esto más o menos rápido? Haciéndolo por partes te puedes tirar las 4,5 horas de examen.
Quizás usando el método de derivar bajo la integral, pero tampoco es algo recomendable hacer en un examen de este tipo xdd.


38. El problema max (x + 1)2 + (y + 7/2)2 sujeta a x +
4y ≤ k tiene la solución (x*, y*) y el valor óptimo
de la función es 17. Entonces
1. k = 0.
2. k = −2.
3. k = 4.
4. k = 2.[RC]
Este lo pregunté el año pasado pero nadie pudo responder. ¿Algún alma caritativa que sepa cómo enfrentarse a esta cosa?
Sí, ya la tengo vista de otros años y va ser mejor que la des por perdida, creo que nadie la va a responder jajaja.

59. Se reparten todas las cartas de una baraja entre
5 jugadores. Sea X la variable aleatoria que cuenta el número de reyes que recibe el primer jugador. Entonces X sigue una distribución
1. Binomial
2. Normal
3. Geométrica
4. Ninguna de las anteriores.[RC]
Yo pensé que sería geométrica. ¿De qué tipo sería entonces?
Apostaría a que fuese una hipergeométrica, porque entiendo que no hay reemplazamiento. No se me ocurre otra.

83. En una bolsa hay bolas numeradas: 9 bolas con
un uno, 5 con un dos y 6 conun tres. Sacamos una
bola y vemos qué número tiene. Calcula la media
de la distribución de probabilidad.
1. 1
2. 1,5
3. 1,85[RC]
4. 2
Si los números de las bolas son enteros, ¿por qué se queda con una media no entera? En este otro ejercicio hace eso:
64. Si X es una variable aleatoria uniforme en [0; 5] e
Y = [X] (parte entera de X), la esperanza E(Y )
vale
1. 5/2
2. 7/2
3. 2[RC]
4. 3


Muchas gracias y besitos :kiss: :kiss:
Muchas gracias! Una de las cosas es que había confundido la geométrica con la hipergeométrica... cómo ha podido pasar, verdad? ¬¬
jeusus
Al
Al
Mensajes: 127
Registrado: 10 Ene 2013, 12:00

Re: Examen Temático Semana 26

Mensaje: # 128795Mensaje jeusus »

Rakel escribió: 16 Oct 2021, 17:11 Me he dado cuenta de que para el 64 no hace falta integrar porque, aunque es continua, todos los valores duran lo mismo y por tanto se puede considerar discreta. Así que te paso la foto (iría como complemento a la anterior)

También te paso la de la 15 que ayer me la salté
Muchas gracias, Rakel. Lo único que no entiendo por qué en la 64 no tienes en cuenta el valor 5, que está dentro del intervalo, que es cerrado.
Rakel
O
O
Mensajes: 77
Registrado: 08 Ene 2020, 03:03

Re: Examen Temático Semana 26

Mensaje: # 128796Mensaje Rakel »

Porque lo que dura es digamos 0 porque justo se cierra ahí.
wardi
H
Mensajes: 4
Registrado: 15 Oct 2021, 15:21

Re: Examen Temático Semana 26

Mensaje: # 128797Mensaje wardi »

jeusus escribió: 15 Oct 2021, 12:21 38. El problema max (x + 1)2 + (y + 7/2)2 sujeta a x +
4y ≤ k tiene la solución (x*, y*) y el valor óptimo
de la función es 17. Entonces
1. k = 0.
2. k = −2.
3. k = 4.
4. k = 2.[RC]
Este lo pregunté el año pasado pero nadie pudo responder. ¿Algún alma caritativa que sepa cómo enfrentarse a esta cosa?
Buenas!

Este es un problema de multiplicadores de Lagrange. Hay que construir

\( f(x,y,\lambda) = (x+1)^2 + (y+7/2)^2 - \lambda (x+4y-k) = 0, \)

calcular las derivadas con respecto a cada una de las tres variables y por último resolver el sistema de ecuaciones.
jeusus
Al
Al
Mensajes: 127
Registrado: 10 Ene 2013, 12:00

Re: Examen Temático Semana 26

Mensaje: # 128798Mensaje jeusus »

Ole tú! Muchas gracias!
Una duda que me queda. ¿Lo de que el valor máximo es 17 no lo usamos para nada?
wardi
H
Mensajes: 4
Registrado: 15 Oct 2021, 15:21

Re: Examen Temático Semana 26

Mensaje: # 128799Mensaje wardi »

:)

Sí lo usas. Es la cuarta ecuación que necesitas para resolver el sistema de 4 incógnitas \((x,y,\lambda,k)\). Simplemente igualas la ecuación original, la que quieres maximizar, a 17.
jeusus
Al
Al
Mensajes: 127
Registrado: 10 Ene 2013, 12:00

Re: Examen Temático Semana 26

Mensaje: # 128800Mensaje jeusus »

wardi escribió: 19 Oct 2021, 13:07 :)

Sí lo usas. Es la cuarta ecuación que necesitas para resolver el sistema de 4 incógnitas \((x,y,\lambda,k)\). Simplemente igualas la ecuación original, la que quieres maximizar, a 17.
Ah! Claro, todo el sentido. Gracias de nuevo.
Esto de los multiplicadores de Lagrange nunca fue lo mío, de verdad. Que pesadilla.
wardi
H
Mensajes: 4
Registrado: 15 Oct 2021, 15:21

Re: Examen Temático Semana 26

Mensaje: # 128801Mensaje wardi »

De nada :)

Normal.. hay tantísimas cosas que estudiar que es difícil tener fresco todo.. Mucho ánimo!
Hueso
H
Mensajes: 1
Registrado: 14 Sep 2021, 12:24

Re: Examen Temático Semana 26

Mensaje: # 128804Mensaje Hueso »

jeusus escribió: 15 Oct 2021, 12:21 Aquí voy de nuevo con una tanda de dudas.
En serio, ¿nadie más tiene dudas respecto a los parciales? Me estoy sintiendo fatal. De todos modos aquí voy.

2. Sea X una variable aleatoria N(3,2). Sea Y = X2.
Entonces:
1. P(Y ≥ 9) = 1/2
2. P(Y > 9) = 1/2
3. P(Y ≥ 9) > 1/2[RC]
4. P(Y ≥ 9) < 1/2

Este es solamente saber que en una distribución normal P(X<=media) = 1/2. Como lo que preguntan es Y que es el cuadrado pues para que sea 9, aparte de la media también se cuela -3 que es menos probable pero algo cuenta. Así que por eso la correcta es la 3.

15. Para medir el diámetro de un roble se realizan
doce mediciones obteniéndose un valor medio
de 243 cm. Una de las medidas fue 238 cm. Averigua el error relativo cometido en dicha medida.
1. 0,98%
2. 2,06%[RC]
3. 1,20%
4. 0,02%


20. Si X es una variable aleatoria con función de densidad fX(x) = αe-λ|x| (con α, λ constantes positivas).
Entonces la varianza de X es:
1. 2/λ
2. 1/λ2
3. 2/λ2[RC]
4. 3/λ2

Como no hay tiempo en hacer las integrales, lo rápido es darse cuenta que es dos veces una distribución exponencial por culpa del valor absoluto. Así que su varianza pues es dos veces la de una exponencial 2/l^2.

24. Calcular ∫0∞te-2t cos t dt.
1. 3/5
2. 2/5
3. 3
4. 3/25[RC]
¿Alguien sabe algún método para resolver esto más o menos rápido? Haciéndolo por partes te puedes tirar las 4,5 horas de examen.

Puedes sustituir cost = Re{e^it}, hacerla y tomar la parte real al final. Así se simplifica un poco.

38. El problema max (x + 1)2 + (y + 7/2)2 sujeta a x +
4y ≤ k tiene la solución (x*, y*) y el valor óptimo
de la función es 17. Entonces
1. k = 0.
2. k = −2.
3. k = 4.
4. k = 2.[RC]
Este lo pregunté el año pasado pero nadie pudo responder. ¿Algún alma caritativa que sepa cómo enfrentarse a esta cosa?


59. Se reparten todas las cartas de una baraja entre
5 jugadores. Sea X la variable aleatoria que cuenta el número de reyes que recibe el primer jugador. Entonces X sigue una distribución
1. Binomial
2. Normal
3. Geométrica
4. Ninguna de las anteriores.[RC]
Yo pensé que sería geométrica. ¿De qué tipo sería entonces?


83. En una bolsa hay bolas numeradas: 9 bolas con
un uno, 5 con un dos y 6 conun tres. Sacamos una
bola y vemos qué número tiene. Calcula la media
de la distribución de probabilidad.
1. 1
2. 1,5
3. 1,85[RC]
4. 2
Si los números de las bolas son enteros, ¿por qué se queda con una media no entera? En este otro ejercicio hace eso:
64. Si X es una variable aleatoria uniforme en [0; 5] e
Y = [X] (parte entera de X), la esperanza E(Y )
vale
1. 5/2
2. 7/2
3. 2[RC]
4. 3


Muchas gracias y besitos :kiss: :kiss:
jeusus
Al
Al
Mensajes: 127
Registrado: 10 Ene 2013, 12:00

Re: Examen Temático Semana 26

Mensaje: # 128810Mensaje jeusus »

Hueso escribió: 22 Oct 2021, 19:54
jeusus escribió: 15 Oct 2021, 12:21 Aquí voy de nuevo con una tanda de dudas.
En serio, ¿nadie más tiene dudas respecto a los parciales? Me estoy sintiendo fatal. De todos modos aquí voy.

2. Sea X una variable aleatoria N(3,2). Sea Y = X2.
Entonces:
1. P(Y ≥ 9) = 1/2
2. P(Y > 9) = 1/2
3. P(Y ≥ 9) > 1/2[RC]
4. P(Y ≥ 9) < 1/2

Este es solamente saber que en una distribución normal P(X<=media) = 1/2. Como lo que preguntan es Y que es el cuadrado pues para que sea 9, aparte de la media también se cuela -3 que es menos probable pero algo cuenta. Así que por eso la correcta es la 3.

15. Para medir el diámetro de un roble se realizan
doce mediciones obteniéndose un valor medio
de 243 cm. Una de las medidas fue 238 cm. Averigua el error relativo cometido en dicha medida.
1. 0,98%
2. 2,06%[RC]
3. 1,20%
4. 0,02%


20. Si X es una variable aleatoria con función de densidad fX(x) = αe-λ|x| (con α, λ constantes positivas).
Entonces la varianza de X es:
1. 2/λ
2. 1/λ2
3. 2/λ2[RC]
4. 3/λ2

Como no hay tiempo en hacer las integrales, lo rápido es darse cuenta que es dos veces una distribución exponencial por culpa del valor absoluto. Así que su varianza pues es dos veces la de una exponencial 2/l^2.

24. Calcular ∫0∞te-2t cos t dt.
1. 3/5
2. 2/5
3. 3
4. 3/25[RC]
¿Alguien sabe algún método para resolver esto más o menos rápido? Haciéndolo por partes te puedes tirar las 4,5 horas de examen.

Puedes sustituir cost = Re{e^it}, hacerla y tomar la parte real al final. Así se simplifica un poco.

38. El problema max (x + 1)2 + (y + 7/2)2 sujeta a x +
4y ≤ k tiene la solución (x*, y*) y el valor óptimo
de la función es 17. Entonces
1. k = 0.
2. k = −2.
3. k = 4.
4. k = 2.[RC]
Este lo pregunté el año pasado pero nadie pudo responder. ¿Algún alma caritativa que sepa cómo enfrentarse a esta cosa?


59. Se reparten todas las cartas de una baraja entre
5 jugadores. Sea X la variable aleatoria que cuenta el número de reyes que recibe el primer jugador. Entonces X sigue una distribución
1. Binomial
2. Normal
3. Geométrica
4. Ninguna de las anteriores.[RC]
Yo pensé que sería geométrica. ¿De qué tipo sería entonces?


83. En una bolsa hay bolas numeradas: 9 bolas con
un uno, 5 con un dos y 6 conun tres. Sacamos una
bola y vemos qué número tiene. Calcula la media
de la distribución de probabilidad.
1. 1
2. 1,5
3. 1,85[RC]
4. 2
Si los números de las bolas son enteros, ¿por qué se queda con una media no entera? En este otro ejercicio hace eso:
64. Si X es una variable aleatoria uniforme en [0; 5] e
Y = [X] (parte entera de X), la esperanza E(Y )
vale
1. 5/2
2. 7/2
3. 2[RC]
4. 3


Muchas gracias y besitos :kiss: :kiss:
Muchas gracias, Hueso! Vaya crack.
Responder